citrine.informatics.predictor_evaluation_metrics module
- class citrine.informatics.predictor_evaluation_metrics.AreaUnderROC
Bases:
Serializable
[AreaUnderROC
],PredictorEvaluationMetric
Area under the receiver operating characteristic (ROC) curve.
- classmethod build(data: dict) Self
Build an instance of this object from given data.
- dump() dict
Dump this instance.
- classmethod get_type(data) Type[Serializable]
Return the subtype.
- typ = 'AreaUnderROC'
- class citrine.informatics.predictor_evaluation_metrics.CoverageProbability(*, coverage_level: str | float = '0.683')
Bases:
Serializable
[CoverageProbability
],PredictorEvaluationMetric
Percentage of observations that fall within a given confidence interval.
The coverage level can be specified to 3 digits, e.g., 0.123, but not 0.1234.
- Parameters:
coverage_level (Union[str, float]) – Confidence-interval coverage level. The coverage level must be between 0 and 1.0 (non-inclusive) and will be rounded to 3 significant figures. Default: 0.683 corresponds to one std. deviation
- classmethod build(data: dict) Self
Build an instance of this object from given data.
- dump() dict
Dump this instance.
- classmethod get_type(data) Type[Serializable]
Return the subtype.
- typ = 'CoverageProbability'
- class citrine.informatics.predictor_evaluation_metrics.F1
Bases:
Serializable
[F1
],PredictorEvaluationMetric
Support-weighted F1 score.
- classmethod build(data: dict) Self
Build an instance of this object from given data.
- dump() dict
Dump this instance.
- classmethod get_type(data) Type[Serializable]
Return the subtype.
- typ = 'F1'
- class citrine.informatics.predictor_evaluation_metrics.NDME
Bases:
Serializable
[NDME
],PredictorEvaluationMetric
Non-dimensional model error.
The non-dimensional model error is the RMSE divided by the standard deviation of the labels in the training data (including all folds, not just the training folds).
- classmethod build(data: dict) Self
Build an instance of this object from given data.
- dump() dict
Dump this instance.
- classmethod get_type(data) Type[Serializable]
Return the subtype.
- typ = 'NDME'
- class citrine.informatics.predictor_evaluation_metrics.PVA
Bases:
Serializable
[PVA
],PredictorEvaluationMetric
Predicted vs. actual data.
Results are returned as a flattened list, where each item represents predicted vs. actual data for a single point.
- classmethod build(data: dict) Self
Build an instance of this object from given data.
- dump() dict
Dump this instance.
- classmethod get_type(data) Type[Serializable]
Return the subtype.
- typ = 'PVA'
- class citrine.informatics.predictor_evaluation_metrics.PredictorEvaluationMetric
Bases:
PolymorphicSerializable
[PredictorEvaluationMetric
]A metric computed during a Predictor Evaluation Workflow.
Abstract type that returns the proper type given a serialized dict.
- classmethod build(data: dict) SelfType
Build the underlying type.
- classmethod get_type(data) Type[Serializable]
Return the subtype.
- class citrine.informatics.predictor_evaluation_metrics.RMSE
Bases:
Serializable
[RMSE
],PredictorEvaluationMetric
Root-mean-square error.
- classmethod build(data: dict) Self
Build an instance of this object from given data.
- dump() dict
Dump this instance.
- classmethod get_type(data) Type[Serializable]
Return the subtype.
- typ = 'RMSE'
- class citrine.informatics.predictor_evaluation_metrics.RSquared
Bases:
Serializable
[RSquared
],PredictorEvaluationMetric
Fraction of variance explained, commonly known as R^2.
This dimensionless metric is equal to 1 - (mean squared error / variance of data). It is equal to the coefficient of determination calculated with respect to the line predicted = actual, hence it is commonly referred to as R^2. But unlike R^2 from ordinary linear regression, this metric can be negative.
- classmethod build(data: dict) Self
Build an instance of this object from given data.
- dump() dict
Dump this instance.
- classmethod get_type(data) Type[Serializable]
Return the subtype.
- typ = 'RSquared'
- class citrine.informatics.predictor_evaluation_metrics.StandardRMSE
Bases:
Serializable
[StandardRMSE
],PredictorEvaluationMetric
Standardized root-mean-square error.
- classmethod build(data: dict) Self
Build an instance of this object from given data.
- dump() dict
Dump this instance.
- classmethod get_type(data) Type[Serializable]
Return the subtype.
- typ = 'StandardRMSE'