citrine.informatics.predictor_evaluation_result module
- class citrine.informatics.predictor_evaluation_result.CategoricalPredictedVsActual
Bases:
Serializable
[CategoricalPredictedVsActual
],MetricValue
List of predicted vs. actual data points for a categorical value.
- classmethod build(data: dict) Self
Build an instance of this object from given data.
- dump() dict
Dump this instance.
- classmethod get_type(data) Type[Serializable]
Return the subtype.
- typ = 'CategoricalPredictedVsActual'
- value = None
List of predicted vs. actual data computed during a predictor evaluation. This is a flattened list that contains data for all trials and folds.
- Type:
- class citrine.informatics.predictor_evaluation_result.CrossValidationResult
Bases:
Serializable
[CrossValidationResult
],PredictorEvaluationResult
Result of performing a cross-validation evaluation on a predictor.
Results for a cross-validated response can be accessed via
cvResult['response_name']
, wherecvResult
is acitrine.informatics.predictor_evaluation_result.CrossValidationResult
and'response_name'
is a response analyzed by acitrine.informatics.predictor_evaluator.CrossValidationEvaluator
.- classmethod build(data: dict) Self
Build an instance of this object from given data.
- dump() dict
Dump this instance.
- classmethod get_type(data) Type[Serializable]
Return the subtype.
- property evaluator: CrossValidationEvaluator
Evaluator that produced this result.
- Type:
- property metrics: Set[PredictorEvaluationMetric]
Metrics for which results are present.
- Type:
- property responses: Set[str]
Responses for which results are present.
- typ = 'CrossValidationResult'
- class citrine.informatics.predictor_evaluation_result.MetricValue
Bases:
PolymorphicSerializable
[MetricValue
]Value associated with a metric computed during a Predictor Evaluation Workflow.
- classmethod build(data: dict) SelfType
Build the underlying type.
- classmethod get_type(data) Type[Serializable]
Return the subtype.
- class citrine.informatics.predictor_evaluation_result.PredictedVsActualCategoricalPoint
Bases:
Serializable
[PredictedVsActualCategoricalPoint
]Predicted vs. actual data for a single categorical data point.
- classmethod build(data: dict) Self
Build an instance of this object from given data.
- dump() dict
Dump this instance.
- actual = None
Actual class probabilities defined as a map from each class name to its relative frequency
- Type:
Dict[str, float]
- fold = None
1-based index of the fold this candidate belonged to
- Type:
int
- identifiers = None
Set of globally unique identifiers given to the candidate
- Type:
Set[str]
- predicted = None
Predicted class probabilities defined as a map from each class name to its relative frequency
- Type:
Dict[str, float]
- trial = None
1-based index of the trial this candidate belonged to
- Type:
int
- uuid = None
Unique Citrine id given to the candidate
- Type:
UUID
- class citrine.informatics.predictor_evaluation_result.PredictedVsActualRealPoint
Bases:
Serializable
[PredictedVsActualRealPoint
]Predicted vs. actual data for a single real-valued data point.
- classmethod build(data: dict) Self
Build an instance of this object from given data.
- dump() dict
Dump this instance.
- actual = None
Actual value
- Type:
- fold = None
1-based index of the fold this candidate belonged to
- Type:
int
- identifiers = None
Set of globally unique identifiers given to the candidate
- Type:
Set[str]
- predicted = None
Predicted value
- Type:
- trial = None
1-based index of the trial this candidate belonged to
- Type:
int
- uuid = None
Unique Citrine id given to the candidate
- Type:
UUID
- class citrine.informatics.predictor_evaluation_result.PredictorEvaluationResult
Bases:
PolymorphicSerializable
[PredictorEvaluationResult
]A Citrine Predictor Evaluation Result.
This class represents a set of metrics computed by a Predictor Evaluator.
- classmethod build(data: dict) SelfType
Build the underlying type.
- classmethod get_type(data) Type[Serializable]
Return the subtype.
- property evaluator: PredictorEvaluator
Evaluator that produced the result.
- Type:
- property metrics: Set[PredictorEvaluationMetric]
Metrics computed for predictor responses.
- Type:
- property responses: Set[str]
Predictor responses that were evaluated.
- class citrine.informatics.predictor_evaluation_result.RealMetricValue
Bases:
Serializable
[RealMetricValue
],MetricValue
Mean and standard error computed for a real-valued metric.
- classmethod build(data: dict) Self
Build an instance of this object from given data.
- dump() dict
Dump this instance.
- classmethod get_type(data) Type[Serializable]
Return the subtype.
- mean = None
Mean value
- Type:
float
- standard_error = None
Standard error of the mean
- Type:
Optional[float]
- typ = 'RealMetricValue'
- class citrine.informatics.predictor_evaluation_result.RealPredictedVsActual
Bases:
Serializable
[RealPredictedVsActual
],MetricValue
List of predicted vs. actual data points for a real value.
- classmethod build(data: dict) Self
Build an instance of this object from given data.
- dump() dict
Dump this instance.
- classmethod get_type(data) Type[Serializable]
Return the subtype.
- typ = 'RealPredictedVsActual'
- value = None
List of predicted vs. actual data computed during a predictor evaluation. This is a flattened list that contains data for all trials and folds.
- Type:
- class citrine.informatics.predictor_evaluation_result.ResponseMetrics
Bases:
Serializable
[ResponseMetrics
]Set of metrics computed by a Predictor Evaluator for a single response.
Results computed for a metric can be accessed by the metric’s
__repr__
or by the metric itself.- classmethod build(data: dict) Self
Build an instance of this object from given data.
- dump() dict
Dump this instance.
- metrics = None
Metrics computed for a single response, keyed by the metric’s
__repr__
.- Type:
Dict[str, MetricValue]